Elementary Curriculum Guide

We Make Good Students Great!

2017-2018

Science - Grade 1

Cycle 3

<table>
<thead>
<tr>
<th>43 Days</th>
<th>The recommended number of days/lessons is less than the number of days in the grading cycle to accommodate differentiated instruction, extended learning time, and assessments days.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 8-Mar 9, 2018</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit</th>
<th># of Days/Lessons</th>
<th>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</th>
<th>The student will:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 9: Earth Materials</td>
<td>5 50-minute lessons</td>
<td></td>
<td>Unit 9: Earth Materials (11 lessons)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.7A observe, compare, describe, and sort components of soil by size, texture, and color;</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.7C gather evidence of how rocks, soil, and water help to make useful products</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>SPIRAL 1.1C identify and learn how to use natural resources and materials, including conservation and reuse or recycling of paper, plastic, and metals</td>
</tr>
</tbody>
</table>

Sample Test Item

- 1.7A Soil Components
- 1.7C Natural Resources

Notes to Teacher

- Students should be given opportunities to observe, describe, compare and sort soil based on its properties.
- Students should understand that all soil is not the same and has components with different sizes, textures and color.
- Students might think that soil and water are only important to plants, but they should also know that rocks, soil and water help make products useful in our everyday lives.

Academic Vocabulary

<table>
<thead>
<tr>
<th>resource</th>
<th>rocks</th>
<th>sieve/filter</th>
<th>soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>water</td>
<td>texture</td>
<td>product</td>
<td></td>
</tr>
</tbody>
</table>

Vertical Alignment

<table>
<thead>
<tr>
<th>Kindergarten Grade</th>
<th>2nd Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.7A observe, describe, compare, and sort rocks by size, shape, color, and texture</td>
<td>2.7A observe and describe rocks by size, texture, and color</td>
</tr>
</tbody>
</table>

Science Background Information

Soil covers the land of our planet with life-giving material that provides a home for countless tiny creatures, nutrients for plant life, and a natural resource that humans have put to use as an ingredient in many manufactured products. **Soil** is a mixture of nonliving and living materials. The nonliving part of soil is a mixture of air, water, and little pieces of rock. The living part of soil is a mixture of plant roots and creatures like earthworms, bacteria, and...
small burrowing animals. When dead plants or animals fall on top of soil, they begin to decay and become part of the soil. This organic material of decaying plants and animals (called humus) adds rich nutrients to the soil that plants use for growth. Decaying of organic material and the weathering of rocks into tiny particles are slow processes, so soil takes a long time to form.

Note:
The three major soil types are sandy (largest particles, loose when wet), silt (medium particles, powdery, smooth when wet) and clay (smallest particles, powdery, sticky when wet). Soils can be any combination of those three soil types depending on the region where they were formed. Topsoil (called loam) is a mixture of all three soil types and is also rich in humus (organic material). The soil samples suggested for the Explore activity are topsoil (available as potting soil), sandy soil, and clay soil. Not all soils form alike.

Loam, topsoil, and potting soil all refer to the same type of soil. Loam is rich in organic materials from years of decaying plants and animal material such as in America’s farmland. The organic material provides important nutrients to plant life growing in that soil. Commercial potting soil is a dark-brown or black topsoil or loam. Potting soil has a spongy, squishy texture when water is added.

Sandy soil is brown but lacks the organic material in topsoil and feels coarse, rough, and gritty. When water is added to sandy soil, the large sand grains do not hold water well, and the soil falls apart easily. Fertilizers and organic materials must be added to sandy soil to provide nutrients for plant life.

Clay soil has smooth, powdery, silky particles, which can hold water and become sticky. Clay soils are often red.

Soil particles range in size from the biggest sand grains in sandy soil to the smallest particles in clay soil. Topsoil (potting soil) is a mixture of particle sizes. Sandy soil has a rough, coarse, gritty texture due to the large sand grains. Topsoil has a spongy, squishy texture due to the small pieces of dead leaves, roots, and other decaying organic material mixed in. When dry, clay soil has a powdery, smooth texture due to the fine size of the weathered particles. Clay soil becomes sticky when wet. Soil color depends on the region in which the soil was formed. Sandy soils are brownish, ranging in color from light brown to reddish brown sand grains. Topsoil ranges in color from black to dark brown and is typically dark from the organic materials. Clay soils can be red, yellowish, or grey depending on the formation region.

Humans have created a huge variety of manufactured products made from natural resources like rock, soil, and water. In ancient times, rocks became weapons and stone tools. Later, as civilizations developed, rocks were used to build walls, homes, and temples. Rocks were inscribed with words, numbers, and art.

Today, rocks are quarried (dug out) and used in thousands of products, such as gravel for roads, hard sandstone blocks for city buildings, marble slabs for counter tops, or soft talc ground into baby powder. Rocks with metal (ores) are mined and processed (often using water) for gold and silver jewelry, copper for wiring, or aluminum for foil. Gemstone rocks are used for jewelry and
adornments. When ground limestone is added to water and gravel, a strong cement product is made. Clay soils and water are combined and fired in kilns (ovens) at high temperatures to make porcelain dinnerware or sturdy ceramic mugs. Stone and clay are also popular as a medium for art sculptures. Water is used in manufacturing as a solvent because it dissolves so many substances. It is also used in cleaning solutions, food products, and beverages. Water can also be heated to make steam for rotating the blades of a turbine engine to create electricity. Bodies of water are used for boat transportation, fishing, and recreation. Rocks, soil, and water are three natural resources that continue to be essential to our human world.

Essential Questions
- What physical properties can we use to describe, compare, and sort soil?
- What evidence can we gather that tells us how rocks, soil, and water are useful to us?

Inquiry Questions
- What can be found in soil near your home?
- How are soil types the same and different?

Key Science Concepts
- Different types of rocks and soil differ in their observable properties.
- Soil can be sorted based on particle size, texture, and color.
- We can see examples in daily life of how we use products made from rocks, soil, and water.

Science Websites
- http://idahoptv.org/sciencetrek/topics/soil/games.cfm
###小学科学—一年级

周期 3

单元	课时/天数	循环周期	推荐的课程天数/课程时数
单元 10: 水体	50 分钟课程	43 天	1月8日至3月9日，2018年

- **单元 10: 水体**
 - 学生将探索自然资源并了解它们的使用。

- **50 分钟课程**
 - 建议排期：______ - ______

- **单元 10: 水体（5 课时）**
 - **1.7B: 识别并描述各种天然水源，包括河流、湖泊和海洋；**

 - **螺旋**
 - **1.5B: 预测并识别材料在加热和冷却时的变化（例如：冰融化、水结冰和水蒸发）。**

- **考试样题**
 - **1.7B 水体**

- **教师注意事项**
 - 学生应有机会识别和描述许多不同的天然水源。
 - 学生应理解来自不同来源的水具有不同的特性。
 - 学生可能会认为所有的水都是相同的，但应知道我们可以观察水的色、味、量、类型和运动的差异。

- **学术词汇**
 - 海洋
 - 河
 - 湖
 - 流
 - 新鲜水
 - 盐水

- **垂直对齐**
 - ** kindergarten 级别**
 - **K.7B 观察并描述自然水源的物理性质**

 - **2.7B: 识别并比较天然水源的物理性质**

- **科学背景信息**
 - 从太空中看，地球是一个蓝色的星球。这种蓝色来自于地球表面约75%的水。
 - 大部分是海洋盐水。令人惊讶的是，只有3%的所有水是淡水，其中大部分是在两极处冻结了。
 - 这就只剩下1%的淡水来源在河流、湖泊和池塘中。
Water is essential for life and collects in a variety of locations on Earth. The precipitation that falls on mountains is pulled downward by gravity into streams and larger rivers that flow into lakes, seas, and eventually the oceans. Some seep down to flow underground or to soak into the soil. 1st grade students do not study the water cycle at this time. They focus only on water that collects in rivers, streams, lakes, and oceans.

The largest saltwater sources are the five oceans, which flow interconnected around the globe (Pacific, Atlantic, Indian, Antarctic, and Arctic). Oceans swirl in enormous currents that slowly move water around the globe and crash on coastlines as waves. Ocean tides rise and fall also along coastlines. The next largest bodies of water, seas, are also salty but are fully or partially enclosed by land, like the Dead Sea or the Mediterranean Sea. Although seas are not specifically mentioned in TEKS 1.7B, students often confuse seas with oceans.

The largest freshwater sources are rivers that flow downstream into other rivers, lakes, or oceans. Young rivers in mountains are narrow and flow rapidly, while older rivers are wide, like the Mississippi and meander slowly into larger bodies of water. The Rio Grande and Pecos are famous Texas rivers. Smaller rivers that flow are called streams and are found trickling their way downhill to connect to rivers or lakes. Smaller streams are called creeks, brooks, or springs. Lakes are large freshwater sources that collect from water draining into a basin surrounded by land and are fed by rivers and streams. Lake water is generally still and does not flow. Many lakes in northern regions are the remains of ancient melted glacial deposits. Lakes are usually several acres in size, while ponds are simply small lakes. Man-made lakes can be created by a dammed reservoir, however 1st grade students focus only on natural sources for bodies of water.

Water is naturally a clear liquid. However, when looking through deep water, light rays are scattered, and the water appears faint blue. When other substances are added to natural bodies of water, such as minerals and living organisms, the color changes even more. Ocean water is rich in salt, minerals, and an enormous variety of plant and animal life, which give a blue or green color to ocean water. Rivers or streams high in mountains appear clear. As rivers get bigger and pick up more sediment, the water loses its clarity (how clear the water appears), and the river becomes muddy like the Mississippi River. The Colorado River picks up sediment and looks muddy red, except in spring when increased levels of algae turn it green. Algae growing in lakes can turn water a distinct green.
Essential Questions
- What are some natural sources of water?
- What observable characteristics can we use to identify and describe natural sources of water?

Inquiry Questions
- How much of Earth is covered with water?
- Why do we need water?

Key Science Concepts
- Water comes from many different sources including streams, lakes, and oceans.
- Different sources of water have different characteristics such as size, types of water, and movement.
- We can describe and identify different sources of water based on observable characteristics such as color and smell.

Science Websites
- https://www.documentcloud.org/documents/769712-12_s010402a_natural-sources-of-water.html
- https://www.documentcloud.org/documents/769714-12_s010402c_sources-of-water-memory-game.html
Cycle 3

<table>
<thead>
<tr>
<th>Unit</th>
<th># of Days/Lessons</th>
<th>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 11: Plant Parts</td>
<td>6 50-minute lessons</td>
<td>The student will:</td>
</tr>
</tbody>
</table>

Unit 11: Plant Parts

In this unit, students observe, describe, and compare plant parts.

*Suggested Pacing:

_____ - _____

Sample Test Item

1.10B Plants

Notes to Teacher

- Students should be given opportunities to identify the parts of plants.
- Students should understand that the parts of a plant are different.
- Students might think that all parts of a plant are the same but should know that each part has a specific function that helps the plant survive.

Academic Vocabulary

<table>
<thead>
<tr>
<th>root</th>
<th>stems</th>
<th>leaves</th>
<th>flower</th>
</tr>
</thead>
<tbody>
<tr>
<td>nutrients</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Vertical Alignment

<table>
<thead>
<tr>
<th>Kindergarten Grade</th>
<th>2nd Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.10B identify parts of plants such as roots, stem, and leaves; and parts of animals such as head, eyes, and limbs</td>
<td>2.10B observe, record, and compare how the physical characteristics of plants help them meet their basic needs such as stems carry water throughout the plant</td>
</tr>
</tbody>
</table>

Science Background Information

Roots, stems, leaves, branches, and flowers are essential for the survival of a plant. Each plant part has a different job to perform that allows the plant to live, grow, and reproduce seeds to make new plants.

Note: There are four plant groups: mosses, ferns, conifers, and flowering plants. 1st grade students will study only the flowering plant group. The flowering plant group includes those with soft green stems like flowers and vegetables, and plants with woody stems like orange and maple trees.
The root is the part of the plant that is in the soil and pulls water (absorbs) into the plant. Roots are like tiny sponges that soak up water and other nutrients from the soil. Like an anchor, roots also hold the plant down in the soil. The main root branches out into tiny roots that extend down into the soil. Some roots swell to store food and water and are edible, like carrots, beets, radishes, and sweet potatoes.

The stem is the part of the plant that moves the water to the rest of the plant. The stem also brings food made in the leaves to other parts of the plant, like the flower. The stem’s job is like an elevator that brings things up and down. Some plants have edible stems, such as celery, asparagus, and sugar cane. One group of plants with stems that grow underground to store food and water is the potato. Remind students that a trunk is the main stem of a tree. Some tree trunks are used for food, such as syrup from maple tree trunks and cinnamon spice scraped from the bark of a cinnamon tree.

Branches are smaller stems growing from tree trunks.

Note: Leaves on plants with soft, green stems grow directly from the stem. However, leaves on trees grow directly from branches, not the main stem or tree trunk.

Leaves are the parts of the plant attached to stems or the parts of trees attached to branches. Leaves use water, sunlight, and a gas in the air (carbon dioxide) to make plant food (sugar). Many plants have edible leaves (can be eaten), such as lettuce, spinach, and cabbage. Others can be dried and used as a spice, such as basil, oregano, and cilantro.

Note: Sometimes parts of leaves grow thicker underground and are edible like onions. Some leaves are shaped like spines to protect a plant, such as a cactus. The large leaf-like structures on a cactus are actually stems that have taken over photosynthesis to make plant food.

The flower is the colorful part of the plant that has seeds, petals and attracts insects to pollinate the seeds. The fleshy parts that protect seeds are called fruits (sweet) or vegetables (not sweet). Many fruits are edible, such as apples, tomatoes, beans, and nuts. Many flowers, like broccoli, are also edible.

Note: Although scientists classify any fleshy part of the plant that hold seeds as “fruit,” local grocery stores do not. In grocery stores, sweet fruits are found in the “Fruit” section, while non-sweet fruits (like tomatoes, cucumbers, or beans, which all have seeds) are found in the “Vegetable” section.
Students can model the plant parts themselves by moving their feet and toes up and down to be roots, twisting their body to the right and left to be the stem (or trunk), swinging their arms gently to be branches (or smaller stems), waving their hands to be leaves, and wriggling their fingers to be flowers. If they have a handful of real seeds, like sunflower seeds or nuts, the last step would be to drop the seeds from their flower hands onto their desks, which represent the soil. Then they can enjoy eating the seeds or nuts!

Plants are the only organisms that make their own food. Their roots absorb water and nutrients, while their leaves capture the energy from sunlight and the carbon dioxide in the air to make plant food (a sugar called glucose). The sugar is used for daily functions and growth. Plants are remarkable organisms that not only provide their own food but are a source of food for other organisms. Plants have become an important natural resource and a profound source of enjoyment for humans.

Essential Questions
- What are the parts of plants?
- What are the functions of the parts of plants?
- What comparisons can we make between the parts of plants?

Inquiry Questions
- What holds a tree in the ground when it is on a side of a hill?
- Why do plants need sunlight? water?

Key Science Concepts
- Parts of plants work together to allow the plant to function.
- Plants are made up of parts including roots, stems, branches, leaves, and flowers.
- Plants absorb water and nutrients with roots and make their own food using air and the energy from sunlight in their leaves.

Science Websites
- http://www.bbc.co.uk/schools/scienceclips/ages/5_6/growing_plants_fs.shtml
Cycle 3

<table>
<thead>
<tr>
<th>Unit</th>
<th># of Days/Lessons</th>
<th>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 12: Animal Characteristics</td>
<td>8 50-minute lessons</td>
<td>The student will:</td>
</tr>
<tr>
<td>In this unit, students investigate ways physical features effect an animal’s behavior.</td>
<td>Unit 12: Animal Characteristics (8 lessons)</td>
<td>1.10A investigate how the external characteristics of an animal are related to where it lives, how it moves, and what it eats; SPIRAL- 1.9B analyze and record examples of interdependence found in various situations such as terrariums and aquariums or pet and caregiver;</td>
</tr>
</tbody>
</table>

Sample Test Item

1.10 Animal Characteristics

Notes to Teacher

- Students should be given opportunities to investigate the external characteristics of animals.
- Students should understand that external characteristics are related to where an animal lives, how it moves and what it eats.
- Students might think that external characteristics have no purpose but should know that these features help animals survive in their environments.

Academic Vocabulary

<table>
<thead>
<tr>
<th>diet</th>
<th>characteristic</th>
<th>adaptation</th>
<th>classify</th>
</tr>
</thead>
</table>

Vertical Alignment

<table>
<thead>
<tr>
<th>Unit</th>
<th>Kindergarten Grade</th>
<th>2nd Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.10A sort plants and animals into groups based on physical characteristics such as color, size, body covering, or leaf shape</td>
<td>2.10A observe, record and compare how the physical characteristics and behaviors of animals help them meet their basic needs such as fins help fish move and balance in the water</td>
<td></td>
</tr>
</tbody>
</table>

Science Background Information

The cheetah, an African grassland wild cat, has a sleek body and long legs that allow it to run quickly to catch prey. The cheetah’s spotted fur helps it hide while hunting. The Antarctic penguin is covered in very dense feathers to keep warm. The penguin’s slender body helps it walk upright on webbed feet, swim underwater, or slide on the ice. The penguin’s black and white color protects it on both sides from ocean predators. The desert rattlesnake is the same color as the sand and has a long body to wiggle quickly across the hot surface. Each animal on Earth has special physical structures that help it survive in that region.
Different limbs allow animals to move through water, land, or air. Eagles and flamingos have wings for flying. However, the large, strong wings of an eagle allow it to fly long distances to hunt food and swoop quickly to catch it. The wings of the flamingo, a wading bird, are intended mainly for migration flights. The penguin has flippers front and webbed feet behind to swim in water. The snapping turtle also has webbed feet for swimming. In the north, reindeer have hooves to protect their feet from the hard arctic surfaces. Cheetahs have padded paws on strong muscular legs that allow it to be the fastest land animal.

Although the cheetah, shark, and snake all have specialized teeth for eating meat, their teeth are quite different. The cheetah has a set of teeth typical of a large cat with strong, sharp front fangs for ripping meat. The shark is unique in having multiple rows of razor sharp teeth used for biting other fish and sea creatures. The rattlesnake has two large fangs that inject poison that paralyzes the prey, usually small rodents, which helps the predator to swallow its prey whole. The penguin also swallows its food whole (krill and small fish), which it catches at sea with its strong beak. The flamingo also has a beak but turns its head upside down in the shallow water to catch small fish in its hooked beak. The cheetah uses its claws for catching and ripping meat. The Eagle also has claws, called talons, which are long and razor sharp and are used to kill and carry their prey. The Eagle also uses its incredible eyesight for spotting prey, which it can see up to a mile away.

Essential Questions
- What are some important external characteristics of animals?
- How do the external characteristics of animals help us determine where they live?
- How do the external characteristics of animals help us determine how they move and what they eat?

Inquiry Questions
- What allows a camel to live in the desert? A walrus to live in a cold place?
- How do you know which animals belong in the same group?

Key Science Concepts
- Animals have external characteristics such as body covering, color, body shape, or size that are related to where they live.
- Animals have external characteristics such as wings, flippers, hooves, or paws that are related to how they move.
- Animals have external characteristics such as teeth, claws, beaks, or eyes that are related to what they eat.

Science Websites
http://files5.mycscope.us/187196125141074027172180044006181117029205059143/Download.ashx?hash=2.2
https://www.nationalgeographic.com/geography-action/habitats.html
http://mbgnet.net/
Elementary Curriculum Guide

Science- Grade 1

Cycle 3

<table>
<thead>
<tr>
<th>Unit</th>
<th># of Days/Lessons</th>
<th>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</th>
<th>The student will:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit 13: Animal Life Cycles</td>
<td>5 50-minute lessons</td>
<td>The student will:</td>
<td>Unit 13: Animal Life Cycles (5 lessons)</td>
</tr>
<tr>
<td>In this unit, students investigate ways physical features effect an animal’s behavior and compare animal life cycles</td>
<td></td>
<td></td>
<td>1.10C compare ways that young animals resemble their parents;</td>
</tr>
<tr>
<td>SUGGESTED PACING:</td>
<td></td>
<td>SPIRAL: 1.4B measure and compare organisms and objects using non-standard units</td>
<td></td>
</tr>
</tbody>
</table>

Sample Test Item

1.10C Life Cycles

Notes to Teacher

- Students should be given opportunities to compare young animals and their parents.
- Students should understand that some young animals resemble their parents.
- Students might think that all young animals resemble their parents but should know that some young do not resemble their parents during certain stages of their life cycle.

Academic Vocabulary

<table>
<thead>
<tr>
<th>parent</th>
<th>young</th>
<th>trait</th>
<th>reproduce</th>
</tr>
</thead>
</table>

Vertical Alignment

<table>
<thead>
<tr>
<th>Kindergarten Grade</th>
<th>2nd Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>K.10C identify ways that young plants resemble the parent plant</td>
<td>None</td>
</tr>
</tbody>
</table>

Science Background Information

Young animals are smaller than their parents, but they can resemble them in shape and color. Baby sea turtles have shells, flippers in front, and claws in back like their parents. Baby penguins have the same flippers, two clawed feet, and upright body just like their parents. Zebra, chicks, and puppies also have their parents’ color. Some offspring are a different color than their parents. An adult deer is brown, but baby deer have white spots to camouflage them from predators. Baby emperor penguins have the same shape but not the same color as their parents. Their grey body feathers are slowly replaced with the black and white feather colors like that of the adult penguin.
However, some offspring are both a different color and slightly different shape than their parents. Young salamanders are born with feathery gills on the sides of their heads and no bright yellow spots. As young salamanders grow, yellow spots develop and they lose the gills. However, young water-bound black tadpoles have big heads and tails that grow into the hopping legs of the adult green frog.

<table>
<thead>
<tr>
<th>Essential Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• What characteristics do young animals have that resemble the parent?</td>
</tr>
<tr>
<td>• What characteristics do young animals have that do not resemble the parent?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inquiry Questions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• How are a young chick and a mother chicken the same?</td>
</tr>
<tr>
<td>• Which animals look like its parents when it is born?</td>
</tr>
<tr>
<td>• Which animals do not look like its parents when it is born?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Key Science Concepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Parents and young usually resemble one another in a variety of ways.</td>
</tr>
<tr>
<td>• Sometimes young animals do not resemble their parents in a variety of ways.</td>
</tr>
<tr>
<td>• When young animals are different from their parents, we can describe these differences as part of a life cycle.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Science Websites</th>
</tr>
</thead>
<tbody>
<tr>
<td>http://www.bigspringisd.net/Uploads/177/misc/f266812.pdf</td>
</tr>
</tbody>
</table>
Elementary Curriculum Guide
We Make Good Students Great!
2017-2018
Science- Grade 1

<table>
<thead>
<tr>
<th>Cycle 3</th>
<th>43 Days</th>
<th>Jan 8-Mar 9, 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit</td>
<td># of Days/Lessons</td>
<td>Texas Essential Knowledge and Skills/Student Expectations (TEKS/SEs)</td>
</tr>
<tr>
<td>Review</td>
<td>50-minute lessons</td>
<td>The student will: Review//Assess//Reteach//Extend</td>
</tr>
<tr>
<td>Assess</td>
<td>Suggested Pacing:</td>
<td>Spiral back to all previous taught TEKS from the 1st-3rd Nine Weeks</td>
</tr>
<tr>
<td>Reteach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extend</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Past Assessments</th>
<th>1st Nine Weeks Assessment</th>
<th>2nd Weeks Assessment</th>
</tr>
</thead>
</table>